ELECTRIC QUADRUPOLE EXCITATIONS IN RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS by John W. Norbury † Physics Department Washington State University Pullman, WA PACS: 25.70. Np [†] This work was supported in part by NASA grant NAG-1-797. ### **Abstract** Calculations are presented for electric quadrupole excitations in relativistic nucleusnucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei. #### 1. INTRODUCTION The search for a fundamentally new state of matter in the form of a Quark-Gluon Plasma ¹⁾ has stimulated the production of very high energy nuclear beams. The hope is to observe the Quark-Gluon Plasma in a relativistic nucleus-nucleus collision. At the Berkeley Bevalac a variety of light nuclei such as ¹²C, ¹⁶O and ²⁰Ne can be accelerated up to energies of 2.1 GeV/N and heavier nuclei such as ¹³⁹La and ²³⁸ U can be accelerated to 1.26 and 0.96 GeV/N respectively. At Brookhaven, New York, ¹⁶O beams are available at 14.6 GeV/N and at the CERN SPS, in Geneva, beams of ¹⁶O and ³²S are both produced at 60 and 200 GeV/N. The Relativistic Heavy Ion Collider (RHIC) is expected to produce two colliding beams at 100 GeV/N to give a total center-of-mass energy of 200 GeV/N, which corresponds to a single beam energy of 21 TeV/N. Grabiak ²⁾ has pointed out that nuclear beams of 3.5 TeV/N and 8 TeV/N may be possible at the CERN Large Hadron Collider (LHC) or the Superconducting Super Collider (SSC). By way of comparison, the majority of Galactic Cosmic Rays have energies ³⁾ of about 1 GeV/N, with a range ³⁾ typically from 10 MeV/N to 1 TeV/N. However, the JACEE collaboration ⁴⁾ has made observations as high as 1000 TeV/N. Nucleus-nucleus reactions proceed mainly through either the Strong or Electromagnetic (EM) interactions. Historically, Strong interaction processes have been the main object of study ⁵⁾, however with the availability of the above high energy nuclear beams there has been a resurgence of interest in EM interactions in relativistic nucleus-nucleus collisions. ⁶⁾ The primary theoretical tool for studying these relativistic EM processes has been via the Weizsäcker-Williams (WW) method ⁶⁻⁷⁾ of virtual quanta. The nucleus-nucleus total EM reaction cross section is $$\sigma = \int N_{WW} (E_{\gamma}) \, \sigma(E_{\gamma}) \, dE_{\gamma} \tag{1}$$ where E_{γ} is the virtual photon energy, N_{WW} (E γ) is the WW virtual photon spectrum and $\sigma(E_{\gamma})$ is the photonuclear reaction cross section. For high accuracy it is important to use experimental photonuclear data for $\sigma(E_{\gamma})$. (For an excellent compilation of photoneutron data see reference 8.) However, a more exact formulation of σ involves a breakdown into the various EM multipolarities such as electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) etc. The most important contributions to σ are from E1 and E2 so that $$\sigma = \sigma_{E1} + \sigma_{E2}$$ $$= \int [N_{E1}(E_{\gamma})\sigma_{E1}(E_{\gamma}) + N_{E2}(E_{\gamma})\sigma_{E2}(E_{\gamma})] dE_{\gamma}$$ (2) where N_{Ei} (E_γ) is the virtual photon spectrum of a particular multipolarity due to the projectile nucleus and σ_{Ei} (E_γ) is the photonuclear reaction cross section of the target nucleus. Bertulani and Baur ⁶⁾ have derived expressions for N_{Ei} (E_γ) and found that the electric dipole spectrum is the same as the WW spectrum, i.e. N_{E1} (E_γ) = N_{ww} (E_γ). Furthermore at very high projectile energies all N_{Ei} (E_γ) and N_{Mi} (E_γ) are equal so that equation (1) is seen to be a very high energy approximation to all multipolarities included in equation (2). Bertulani and Baur ⁶⁾ have made a crude estimate of the EM cross section using equation (2) but they pulled N_{E1} (E_γ) and N_{E2} (E_γ) outside the integral and evaluated them at a single energy and used sum rules to evaluate $\int \sigma_{Ei}$ (E_γ) d E_γ . However, this procedure did not yield very accurate results. Thus I undertook a more exact study ⁹⁾ leaving equation (2) as it stands, and using experimental data for the photonuclear cross sections by defining $$\sigma_{E1}(E_{\gamma}) \equiv \sigma_{\text{expt.}}(E_{\gamma}) - \sigma_{E2}(E_{\gamma}) \tag{3}$$ where $\sigma_{expt.}$ (E $_{\gamma}$) is the <u>experimentally</u> measured photonuclear cross section and σ_{E2} (E $_{\gamma}$) is a <u>theoretical</u> calculation based on a Lorentzian shape for the Electric Giant Quadrupole Resonance (GQR). Details for this procedure can be found in reference 9. As was noted in that reference, the above procedure yields very accurate values for the sum $\sigma_{E1} + \sigma_{E2}$ (which is to be compared to nucleus-nucleus reaction experiments) even though the GQR parameters are uncertain. The basic reason for this, as can be seen from equation (3), is that an under (over) estimate in σ_{E2} (E γ) will give an over (under) estimate in σ_{E1} (E γ), so that the combined $\sigma_{E1} + \sigma_{E2}$ in equation (2) will not change very much. In reference 9 a detailed study of E1 and E2 was undertaken for the reaction ⁸⁹Y (RHI, X) ⁸⁸Y where RHI refers to various Relativistic Heavy Ions and X is anything. It was found that E2 effects account for a considerable fraction of the cross section, and that inclusion of E2 (via equation 2) provides improved agreement with experiment over the WW method. Given this situation, it was decided to compare this theoretical approach to as much experimental data as possible. Thus the present work involves a comparison to neutron emission from ⁸⁹Y, ¹⁹⁷Au, ⁵⁹Co and neutron and proton emission from ¹²C, ¹⁶O and ¹⁸O which includes both electric dipole and quadrupole effects. This complements earlier work ⁷⁾ which involved an extensive comparison of WW theory to experiment. #### **CALCULATIONAL METHOD** The basic calculational method is outlined in reference 9 and the discussion will not be repeated here. Also reference 7 includes a very detailed summary of which photonuclear data were used for σ_{expt} . (Ey) in equation (3). The same data is used in the present work. All isoscalar GQR parameters were taken from the compilation of Bertrand 10) and are listed in Table 1. As mentioned in the Introduction, even though these parameters are somewhat uncertain the total EM cross section $\sigma_{E1} + \sigma_{E2}$ is expected to be very accurate 9 due to the subtraction procedure of equation (3). The most inaccurate results would be expected for the 12 C, 16 O, 18 O GQR parameters where the isoscalar GQR is fragmented into several components 10). Only a single Lorentzian 9) was **Table 1**: Isoscalar Giant Quadrupole Resonance (GQR) Parameters taken from the compilation of Bertrand 10). E is the GQR resonance excitation energy, Γ is the full-width at half maximum and f is the fractional depletion of the Energy Weighted Sum Rule. (The GQR of light nuclei are fragmented into several peaks, so that the parameters below represent an estimated average value.) | Nucleus | E
(MeV) | Γ
(MeV) | f | |-------------------|-------------------|------------------|-------------------| | ¹² C | 27.5a | 3.0b | 0.4d | | 16O | 22.0 ^b | 3.0c | 0.4d | | 18O | 24.0a | 3.0c | 0.4c | | ⁵⁹ Co | 16.3 ^b | 5.6 ^b | 0.61 ^b | | 89Y | 13.8 ^b | 3.2b | 0.55d | | ¹⁹⁷ Au | 10.8a | 2.9b | 0.95d | ^a E is calculated from 63 A^{-1/3} used in the present work. However σ_{E2} is found to be quite small for these nuclei (see below) so that my conclusion that the calculated $\sigma_{E1} + \sigma_{E2}$ is accurate remains valid. For the nuclei ¹²C, ¹⁶O and ¹⁸O, proton (p) emission occurs as well as neutron (n) emission. Thus equation (3) needs to be modified to incorporate the branching ratio. I assume that the excited nucleus decays <u>only</u> by proton or neutron emission and that the (photon) energy dependent neutron branching ratio is defined as $$f_{n}(E_{\gamma}) \equiv \frac{\sigma_{\text{expt.}}(E_{\gamma}n)}{\sigma_{\text{expt.}}(E_{\gamma}n) + \sigma_{\text{expt.}}(E_{\gamma}p)}$$ (4) so that b best value taken from Table 4 of ref. 10 c estimate d from Fig 23 of ref. 10 $$\sigma_{E2}(E_{\gamma}, n) = f_n(E_{\gamma}) \sigma_{E2}(E_{\gamma})$$ (5) where σ_{E2} (E_{γ}) is the photonuclear GQR cross section. Thus for proton and neutron emission equation (3) becomes $$\sigma_{E1}(E_{\gamma}, n) = \sigma_{expt.}(E_{\gamma}, n) - f_n(E_{\gamma}) \sigma_{E2}(E_{\gamma})$$ (6a) and $$\sigma_{E1}(E_{\gamma}, p) = \sigma_{expt.}(E_{\gamma}, p) - [1 - f_n(E_{\gamma})] \sigma_{E2}(E_{\gamma})$$ (6b) Equations (4) - (6) were used for nucleon emission from 12 C, 16 O and 18 O. For 59 Co, the (γ, p) cross section is not available and so a constant value of $f_n = 0.7$ (suggested from reference 11) was used. For 89 Y and 197 Au I used $f_n = 1.0$. #### **RESULTS AND DISCUSSION** The calculated results are listed in Table 2, along with the experimental results of various groups. $^{12-16)}$ $\sigma_{E1} + \sigma_{E2}$ is the calculated result to be compared with the data σ_{expt} . Also listed are the results of WW calculations. In all cases two theoretical cross sections are listed. The first is calculated using an expression for the minimum impact parameter as $$b_{\min} = R_{0.1}(T) + R_{0.1}(P) \tag{7}$$ where $R_{0.1}$ represents the 10-percent charge density radius ⁷⁾ of the target or projectile. The second theoretical cross section listed in parentheses in Table 2 uses b_{min} given by Hill et al. ¹⁴⁻¹⁶⁾ as $$b_{\min} = r_0 \left[A_p^{1/3} + A_T^{1/3} - X(A_p^{-1/3} + A_T^{-1/3}) \right]$$ (8) where $r_0 = 1.34$ fm and X = 0.75. (Note that my WW calculations disagree with earlier results of Hill et al. ¹⁴⁻¹⁶) due to an error in their calculations. ¹⁹⁻²⁰) There are several features readily apparent from Table 2; (i) $\sigma_{E1} + \sigma_{E2}$ is <u>always</u> larger than σ_{WW} . However, for nucleon emission from ¹²C, ¹⁶O and ¹⁸O this difference is never larger than about 4%, but for neutron emission from ⁵⁹Co, ⁸⁹Y and ¹⁹⁷Au the difference is much larger varying between about 7% - 15%. - ii) For nucleon emission from 12 C and 16 O both $\sigma_{E1} + \sigma_{E2}$ and σ_{WW} agree with experiment for both choices of b_{min} . - iii) For nucleon emission from ^{18}O both $\sigma_{E1} + \sigma_{E2}$ and σ_{WW} disagree with experiment for both choices of bmin. σ_{WW} actually gives slightly better agreement but not by a significant amount. - iv) For neutron emission from 197 Au, $\sigma_{E1} + \sigma_{E2}$ is significantly closer to experimental values than is σ_{WW} , although for most cases it still lies outside the error bars. An exception however is a much poorer agreement for 139 La (see also references 19 and 20). Significant discrepancies with 197 Au data have been noted previously for WW theory. 79 - v) For neutron emission from 89 Y, $\sigma_{E1} + \sigma_{E2}$ is in much better agreement with experiment than is σ_{WW} . This is especially true for the 40 Ar and 56 Fe projectiles. - vi) For 59 Co, $\sigma_{E1} + \sigma_{E2}$ is again better for 20 Ne, although slightly worse for 56 Fe. As above the agreement for the 139 La projectile is significantly poorer. #### SUMMARY AND CONCLUSIONS Calculations have been made for nucleon emission via EM dissociation in relativistic nucleus-nucleus collisions. Results are presented for Weizsäcker-Williams theory and also for separate electric dipole and quadrupole components. The theories have been compared to an extensive data set. It is found that electric quadrupole (E2) effects are not significant for proton and neutron emission from 12 C, 16 O or 18 O. However, E2 contributions are substantial for neutron emission from 59 Co, 89 Y and 197 Au, generally leading to improved agreement between theory and experiment. Notable disagreements occur for 139 La projectiles (1.26 GeV/N) where the theoretical $\sigma_{E1} + \sigma_{E2}$ are too big. Quadrupole effects improve the theoretical results for 16 O projectiles at 60 and 200 GeV/N, although the theoretical cross sections are still too small. In general it has been found that electric quadrupole effects are an important component in nucleus-nucleus collisions and that these effects can be calculated accurately. ## **ACKNOWLEDGEMENTS** I wish to thank Larry Townsend for useful discussions and Gayle Norbury for help with the photonuclear data. #### REFERENCES - 1. K. Kajantie and L. McLerran, Ann. Rev. Nucl. Part. Sci. 37 293 (1987). - 2. M. Grabiak, B. Muller, W. Greiner, G. Soff and P. Koch, J. Phys. G 15 L25 (1989). - 3. J. A. Simpson, Ann. Rev. Nucl. Part. Sci. 33 323 (1983). - 4. W. V. Jones, Y. Takahashi, B. Wosiek and O. Miyamura, Ann. Rev. Nucl. Part. Sci. 37 71 (1987). - 5. W. G. Lynch, Ann. Rev. Nucl. Part. Sci. <u>37</u> 493 (1987). - 6. C. A. Bertulani and G. Baur, Phys. Rep. 163 299 (1988). - 7. J. W. Norbury, "Nucleon Emission via Electromagnetic Excitation in Relativistic Nucleus-Nucleus Collisions: Re-analysis of the Weizsäcker-Williams Method" Phys. Rev. C (in press). - 8. S. S. Dietrich and B. L. Berman, Atomic Data and Nuclear Data Tables 38 199 (1988). - 9. J. W. Norbury, "Electric Quadrupole Excitations in the Interactions of ⁸⁹Y with Relativistic Nuclei," Phys. Rev. C (in press). - 10. F. E. Bertrand, Ann. Rev. Nucl. Sci. 26 457 (1976). - 11. J. W. Norbury, F. A. Cucinotta, L. W. Townsend and F. F. Badavi, Nucl. Inst. Meth. Phys. Res. B <u>31</u> 535 (1988). - 12. H. H. Heckman, and P. J. Lindstrom, Phys. Rev. Lett. <u>37</u>, 56 (1976). - 13. D. L. Olson, B. L. Berman, D. E. Greiner, H. H. Heckman, P. J. Lindstrom, G. D. Westfall, and H. J. Crawford, Phys. Rev. C 24, 1529 (1981). - 14. M. T. Mercier, J. C. Hill, F. K. Wohn, C. M. McCullough, M. E. Nieland J. A. Winger, C. B. Howard, S. Renwick, D. K. Matheis and A. R. Smith, Phys. Rev. C 33 1655 (1986). - 15. J. C. Hill, F. K. Wohn, J. A. Winger, and A. R. Smith, Phys. Rev. Lett. <u>60</u> 999 (1988). - 16. J. C. Hill, F. K. Wohn, J. A. Winger, M. Khayat, K. Leininger, and A. R. Smith, Phys. Rev. C <u>38</u> 1722 (1988). - 17. A Lepretre, H. Beil, R. Bergere, P. Carlos, A. Veyssiere and M. Sugawara, Nucl. Phys. A 175 609 (1971). - B. L. Berman, R. E. Pywell, S. S. Dietrich, M. N. Thompson, K. G. McNeill and J. W. Jury, Phys. Rev. C <u>36</u> 1286 (1987). - 19. J. W. Norbury, Phys. Rev. C <u>39</u> 2472 (1989). - 20. J. C. Hill and F. K. Wohn, Phys. Rev. C <u>39</u> 2474 (1989). **Table 2** Calculated results, $\sigma_{E1} + \sigma_{E2}$ and σ_{WW} , compared to experiment. ¹²⁻¹⁶) Two theoretical cross sections are listed. The first set uses b_{min} given by equation (7) and the second set (in parentheses) uses b_{min} given by equation (8). | Projectile | Projectile R _{0·1} (P) Target R _{0·1} (T) | Target | R ₀₋₁ (T) | Energy | Final | Gexpt | QWW | o _{E1} | o ^{EZ} | $\sigma_{\rm El} + \sigma_{\rm E2}$ | |---|---|--------|----------------------|---------------|-------|-------|-----------|-----------------|-----------------|-------------------------------------| | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (fm) | | (fm) | (GeV/N) State | State | (qm) | (qm) | (qm) | (mp) | (mp) | | | | | | | | | | | | | | 12C | 3.30 | Pb | 7.83 | 2.1 | 11C | 51±18 | 47 (51) | 46 (50) | 2 (2) | 48 (52) | | : | = | = | = | = | 11B | 50±25 | 68 (74) | 68 (73) | 2 (2) | 70 (75) | | ± | = | = | = | 1.05 | 11C | 39±24 | 28 (31) | 28 (31) | 1 (1) | 29 (32) | | = | = | r | = | = | 11B | 50±25 | 42 (47) | 42 (46) | 1 (2) | 43 (48) | | . 091 | 3.68 | E | = | 2.1 | 150 | 50±24 | 59 (64) | 58 (63) | 2 (2) | (65) 09 | | = | = | = | = | = | 15N | 96±26 | 111 (120) | 110 (119) | 4 (4) | 114 (123) | | 12C | 3.30 | Ag | 6.37 | E | 11C | 21±10 | 18 (20) | 18 (19) | 0(1) | 18 (20) | | 2 | = | = | : | ŧ | 11B | 18±13 | 26 (29) | 26 (29) | 1 (1) | 27 (30) | | = | = | E | = | 1.05 | 11C | 21±10 | 12 (13) | 11 (13) | 1 (1) | 12 (14) | | = | Ξ | E | Ξ | = | 11B | 25±19 | 17 (20) | 17 (19) | 1 (1) | 18 (20) | | 160 | 3.68 | * | E | 2.1 | 150 | 26±13 | 23 (25) | 22 (25) | 1 (1) | 23 (26) | | = | | = | = | = | 15N | 30±16 | 42 (46) | 42 (46) | 1 (2) | 43 (48) | Table 2 (cont.) | | | | | | | | | | | | | | | | • | | | |---|-------|-----------------|---------|-------|-------|---------|---------|-------|-------|-------|-------|-------|----------|-----------|-----------|-----------|-----------| | $\begin{pmatrix} \sigma_{E1} + \sigma_{E2} \\ (mb) \end{pmatrix}$ | (0) 0 | (6) &
 | 11 (12) | 5 (6) | (6) 8 | 10 (11) | 18 (21) | 2 (2) | 3 (3) | 1 (2) | 2 (2) | 2 (3) | 4 (5) | 0.4 (0.5) | 0.6 (0.7) | 0.3 (0.4) | 0.5 (0.6) | | о _{Е2}
(mb) | 6 | (n) n | 0)0 | 0)0 | 0)0 | 0)0 | 1(1) | 0)0 | 0 (0) | 0)0 | 0)0 | 0)0 | 0)0 | 0 (0) | 0)0 | 0)0 | 0)0 | | o _{E1}
(mb) | (0) 0 | 8 (9) | 11 (12) | 5 (6) | 8 (9) | 10 (11) | 17 (20) | 2 (2) | 3 (3) | 1 (2) | 2 (2) | 2 (3) | 4 (5) | 0.4 (0.5) | 0.6 (0.7) | 0.3 (0.4) | 0.5 (0.6) | | σww
(mb) | 6 | (6) 8 | 11 (12) | 5 (6) | 8 (9) | 10 (11) | 18 (20) | 2 (2) | 3 (3) | 1 (2) | 2 (2) | 2 (3) | 4 (5) | 0.4 (0.5) | 0.6 (0.7) | 0.3 (0.4) | 0.5 (0.6) | | Gexpt
(mb) | 101 | 10 1 | 4±8 | 876 | 5±8 | 8∓6 | 15±8 | 0±5 | 0±5 | 1±6 | 1±7 | 0±5 | -1±9 | -2±5 | -1±4 | -2±5 | -2±5 | | Final
State | 71 | ر: | 11B | 11C | 11B | 150 | 15N | 11C | 11B | 11C | 11B | 150 | 15N | 11C | 11B | 11C | 11B | | Energy
(GeV/N) | | 7.1 | = | 1.05 | £ | 2.1 | E | = | = | 1.05 | = | 2.1 | = | = | : | 1.05 | = | | | 2 18 | 5.45 | = | = | = | = | = | 4.09 | = | = | = | = | = | 3.30 | = | = | :
- | | Target | - | 3 | F | ± | E | Ξ | z | A | = | = | = | = | = | Ö | : | = | ± . | | R ₀₋₁ (P) (fm) | | 3.30 | = | = | ± | 3.68 | ŧ | 3.30 | £ | = | = | 3.68 | Ξ | 3.30 | 2 | F | = | | Projectile $R_{0.1}(P)$ Target $R_{0.1}(T)$ (fm) $R_{0.1}(T)$ | 12.0 | ر
د
د | = | = | = | 091 | ** | 12C | = | : | = | 160 | £ | 12C | z | E | E | Table 2 (cont.) | $\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 0 (0) 0.5 (0.6) | 0 (0) 1 (1) | 0(1) 15(17) | 0(0) 3(3) | 4 (4) 158 (168) | 2 (2) 29 (32) | 5 (5) 194 (205) | (00) 20 | |---|-----------------|-------------|---------------|--------------|---------------------|---------------|-------------------------------------|------------| | $\begin{pmatrix} \sigma_{\rm E2} \\ ({\rm mb}) \end{pmatrix}$ | | | | <u> </u> | | | | | | $\begin{pmatrix} \sigma_{E1} \\ (mb) \end{pmatrix}$ | 0.5 (0.6) | 1 (1) | 15 (16) | 3 (3) | (5) 154 (164) | 27 (30) | (200) | 33 (36) | | αww
(mb) | 0.5 (0.6) | 1(1) | .7 15 (16) | .0 3 (3) | 136±2.9 155 (165) | .8 28 (31) | 140.8±4.1 191 (202) | 24 (37) | | inal Gexpt | 150 -1±4 | 15N -1±4 | 17O 8.7±2.7 | 17N -0.5±1.0 | 170 136±2 | 17N 20.2±1.8 | ¹⁷ O _{140.8±} | 17N 25 1±1 | | (T) Energy Final (GeV/N) State | 2.1 | : | 1.7 | <u> </u> | = | = | £ | = | | | 3.30 | = | 5.00 | : | 7.83 | = | 8.09 | = | | Target | S | = | H | :
 | Pb | ŧ. | n | = | | Projectile $ R_{0.1}(P) $ Target $ R_{0.1} $ (fm) | 3.68 | = | 3.78 | = | = | = | = | F | | Projectile | 160 | = | 180 | = | = | | z | = | $\sigma_{E1} + \sigma_{E2}$ (mb) 97 (104) 187 (199) 13 (14) 34 (38) 16 (18) 9 (10) 3 (4) 1(1) $\sigma_{E2}^{(mb)}$ 171 (181) 88 (94) 31 (34) 12 (13) $\sigma_{E1}^{\sigma_{E1}}$ 217±20 175 (185) 12 (13) 32 (35) 132±17 90 (96) σ_{WW}^{WW} 43±12 处12 σ_{expt} (mb) Projectile R_{0·1}(P) Target R_{0·1} (T) Energy Final (fm) (GeV/N) State 88Y1.7 2.1 6.02 † 3.30 4.00 4.72 5.24 Table 2 (cont.) 20Ne 40Ar 56Fe ^{12}C Table 2 (cont.) | | $\sigma_{\rm E1}$ + $\sigma_{\rm E2}$ (mb) | 7 (8) | 19 (21) | 103 (111) | 357 (378) | |---|---|----------------------|------------|----------------|-------------------| | | ^о Е2
(mb) | 0(1) | 1(1) | 7 (7) | 24 (26) | | | $\sigma_{\rm E1} \ m (mb)$ | 7 (7) | 18 (20) | 96 (104) | 333 (352) | | | σww
(mb) | 7 (8) | 18 (20) | 88±14 98 (105) | 280±40 339 (358) | | | Gexpt
(mb) | 6∓9 0⊃ ₈₅ | 32±11 | 88±14 | 280±40 | | | Final
State | 58Co | = | = | <u>.</u> | | | (T) Energy Final (GeV/N) State | 2.1 | = | 1.7 | 1.26 | | _ | R ₀₋₁ (T) (fm) | 5.33 | = | = | = | | _ | Target | 39Co | 2 | = | = | | - | R _{0.1} (P) (fm) | 3.30 | 4.00 | 5.24 | 68.9 | | - | Projectile $R_{0.1}(P)$ Target $R_{0.1}(T)$ (fm) (fm) | 12C | 20 Ne | 56Fe | 139 <u>La</u> | † for ⁸⁹Y calculations are presented using the photonuclear data of Lepretre ¹⁶⁾, multiplied by 0.82, as suggested, by Berman et al. ¹⁷⁾